Systematics of Flow Measurements at RHIC

Hiroshi Masui / LBNL

The Berkeley School 2010 School of Collective Dynamics in High Energy Collisions June 7-11, 2010

Thanks to A. Poskanzer and N. Xu for discussions

Outline

1. Introduction

- ✓ Why do we study collective flow ?
- ✓ How to measure anisotropic flow experimentally ?
- 2. Systematics of v_2
 - ✓ Different methods, different collaborations at RHIC

3. Physics results and discussions

- ✓ Initial conditions \Leftrightarrow centrality dependence of v_2
- ✓ Partonic and hadronic Equation Of State (EOS), hadronization
 ↔ transverse momentum (p_T) & particle type dependence of v₂

Conclusions

Physics goals at RHIC

- Study the properties of the matter with partonic degrees of freedom
 - ✓ Anisotropic collective flow is one of the key bulk probes to study early collision dynamics at RHIC
 - \checkmark Why do we study collective flow ?

photons, leptons
jets
heavy flavors

- azimuthal anisotropy
 - fluctuations

Probe to the partonic EOS

- Anisotropic flow is determined by
 - ✓ (1) initial geometry overlap (eccentricity ε), (2) pressure gradient
 ← density profile + EOS, EOS ↔ d.o.f, (3) System size
 - Thermalization is not required. It gives stronger scaling of initial and final anisotropies
 - Space-momentum correlations
- How to measure anisotropic flow experimentally ?

How to measure anisotropic flow ?

$$\frac{dN}{d\phi} \propto 1 + 2v_1 \cos(\phi - \Psi_{\rm RP}) + 2v_2 \cos(2[\phi - \Psi_{\rm RP}]) + \dots$$

 ϕ : azimuthal angle of particles

 $\Psi_{\rm RP}$: azimuth of reaction plane

• Azimuthal anisotropy

- ✓ Fourier expansion of azimuthal particle distributions with respect to the reaction plane
- ✓ Second coefficient = v_2 is dominant
 - Mean v of odd harmonics vanish in symmetric rapidity
- ✓ v₂ = 0.1 (10%) → 1.2/0.8 = 50% more particles in "in-plane" direction than in "out-of-plane"

Centrality determination in heavy ion collisions

- ✓ Determined by multiplicity distributions
 - with Monte Carlo (MC) Glauber simulation or with event generator (ex. HIJING)
- ➡ Number of participants, impact parameter, ...

- Event plane ≠ Reaction plane
 - ✓ due to the finite multiplicity
 - \checkmark event plane is determined by the flow signal itself
- Event plane resolution $\langle \cos (2\Psi_{\rm EP} 2\Psi_{\rm RP}) \rangle$
 - ✓ Require at least two independent event planes
 - ✓ depending on multiplicity as well as v_2

Tracking, transverse momentum

Tracking

- ✓ Time projection chamber + magnetic field (0.5 T)
 - (x,y) positions ← hit positions at read out pads
 - z positions ← drift time of secondary electrons
- p_T determination
- ✓ Magnetic filed + curvature of track

 $p_T \approx 0.3 \times Br \; (\text{GeV}/c)$

- Typical p_T resolution
 - ✓ Δp_T/(p_T)²~1% at p_T = 1 GeV/c

Particle identification

• TPC $-dE/dx \propto 1/\beta^2$

✓ Energy loss (dE/dx) in the TPC; up to $p_T \sim 1$ GeV/c

• Time-Of-Flight detector $\beta = \frac{v}{c} = \frac{l}{tc}, \quad m^2 = p^2 \left| \left(\frac{tc}{l} \right)^2 - 1 \right|$

✓ Flight time. Typical timing resolution < 100 ps $\sqrt{\pi/K}$ ~2 GeV/c, K/p ~ 4 GeV/c

Systematics of v₂ measurements among different methods, different collaborations at RHIC

Methods

Two particle methods

Event plane method: v₂{EP}, ... Two particle correlation: v₂{2}

Large rapidity gap v₂{RXNP}, v₂{BBC}, v₂{FTPC}, ...

Easy implementation Large systematic error

Multi particle methods

Mixed harmonic event plane: v₂{ZDC} Flow vector distribution: v₂{q} Multi-particle cumulant: v₂{n}, n>2 Lee-Yang zero: v₂{LYZ}

> Clean signal Statistics hungry

$$v_2^{measured} = \langle \cos\left(2\phi - 2\Psi_{\rm EP}\right) \rangle = v_2 \times \langle \cos\left(2\Psi_{\rm EP} - 2\Psi_{\rm RP}\right) \rangle \\ v_2^{measured} = \langle \cos\left(2\phi - 2\phi_{\rm ref}\right) \rangle = v_2 \times v_2^{\rm ref}$$

• Two categories: Two and Multi particle methods

- ✓ Different sensitivity to the 'non-flow effects' and ' v_2 fluctuations'
- ✓ Basic assumptions are
 - correlations are dominated by collective flow
 - measured particle and event plane (or reference particle) are statistically independent

Non-flow and fluctuations

Non-flow

- ✓ correlations other than collective flow
 - resonance decays, HBT, momentum conservation, jets, ...
- Fluctuation of v₂
 - \checkmark event-by-event fluctuation of v_2 due to the finite multiplicity
 - ✓ contribution of fluctuations to the v₂ $v_2^{measured} = \langle v_2^{\alpha} \rangle^{1/\alpha}, \ \alpha = 1 2$
 - α = 2 for two particle correlation
 - α varies 1 2 depending on the event plane resolution for v₂{EP}
- How do these affect the resulting v₂ from various methods ?

M. Miller and R. Snellings, arXiv:nucl-ex/0312008, PHOBOS: PR**C77**, 014906 (2008) J.-Y. Ollitrault, A. M. Poskanzer and S. A. Voloshin, PR**C80**, 014904 (2009)

Systematics of v₂ at RHIC

✓ Can we understand the difference among different methods in terms of non-flow effects and v₂ fluctuations ?

Leading order corrections work

• Understand the non-flow and v₂ fluctuations with reasonable assumptions $\delta \propto \delta_{pp}/N_{part}$, $\sigma_{v_2} \propto v_2 \times \sigma_{\varepsilon}/\varepsilon$

✓ caveat: need additional assumptions to separate them

Inter-collaboration comparison

- Quantitative comparison of v₂ at RHIC
- ✓ PHENIX, PHOBOS and STAR
 - see more details in A. Taraneko's talk: <u>http://quark.phy.bnl.gov/www/cathie_files/ca-te/</u> <u>Tuesday/TaranenkoV2Compt2009v4.ppt</u>
- Agreement of v₂ is ~ 10%

✓ with possible 1-2% centrality shift between PHENIX and STAR

- Collective anisotropic flow is sensitive to all stages
- What kind of v₂ measurements are sensitive to different stages of space-time evolution ?

Space-time evolution

- Collective anisotropic flow is sensitive to all stages
- What kind of v₂ measurements are sensitive to different stages of space-time evolution ?

What have we learned at RHIC ? Initial conditions

centrality dependence of v₂

Effect of fluctuations

$$\varepsilon_{\text{part}} = \frac{\sqrt{(\sigma_y^2 - \sigma_x^2)^2 + 4\sigma_{xy}^2}}{\sigma_y^2 + \sigma_x^2}$$

$$\sigma_x^2 = \{x^2\} - \{x\}^2, \sigma_y^2 = \{y^2\} - \{y\}^2$$

$$\sigma_{xy} = \{xy\} - \{x\}\{y\}$$

- Measured v₂ from two particle methods scale with the 'participant eccentricity' ε_{part}
 - ✓ take into account the shift/ rotation of frame due to the fluctuations of participant nucleons
- How strong are v₂ fluctuations ?

H. Masui / LBNL, TBS Jun7-11, 2010

v₂ fluctuations

- 6-45% most central

- Measured v₂ and fluctuations event-by-event

 Non-flow is evaluated by superposition of p + p collisions (PYTHIA)

- Relative fluctuations ~ 30-40%
 - ✓ non-flow correlations ~10% of $(v_2)^2$ signal in $|\eta| < 3$
 - ✓ Consistent with both MC Glauber and CGC initial conditions

Effect of deformation

- Possible oblate deformation effects for Au nucleus
 - ✓ ε_{part} increases ~30% at central Au+Au collisions
 - ✓ Not affect in mid-central and peripheral collisions

Glauber or CGC ? Glauber

- Static, nucleons
- No dynamics
- Well defined cross section in p+p

- Dynamical, gluons
- Momentum dependent
- May not be applicable at large x

* see for example; H.-J. Drescher, Y. Nara PRC75, 034905 (2007)

- Two main initial conditions; Glauber or CGC
 - ✓ Monte Carlo approach to include fluctuations*
 - ✓ How can we constrain the initial conditions from v₂ measurements ?

Glauber or CGC ?

- Comparison with hybrid model, Hydro + hadron cascade with ideal gas EOS
 - ✓ Fluctuation effect is large (Cu+Cu, not shown)
 - ✓ Need QGP viscous effects in CGC ? But data ~ model in Cu+Cu
- System size dependence of v₂ is important to constrain the model parameters

Initial conditions

J. Takahashi, B. M. Tavares, W. L. Qian, R. Andrade, F. Grassi, Y. Hama, T. Kodama, N. Xu, PRL**103**, 242301 (2009)

R. A. Lacey, R. Wei, N. N. Ajitanand, J. M. Alexander, X. Gong, J. Jia, A. Taranenko, R. Pak, H. Stocker arXiv:1002.0649

- Combined with different measurements would address the initial conditions
 - ✓ Ridge ? Higher harmonics ?

What have we learned at RHIC? EOS, hadronization p_T and particle type dependence of v₂

Mass ordering at low pr

- Heavier hadrons show lower v₂
 - ✓ Radial flow + eccentricity
 - ✓ Is mass ordering of v_2 a consequence of partonic EOS ?

Hadronic rescattering

T. Hirano, U. Heinz, D. Kharzeev, R. Lacey, Y. Nara, PRC77, 044909 (2008)

- Hadronic rescattering → mass ordering of v₂
 - ✓ Reproduce mass ordering for π , K and p
 - ✓ v₂(φ) > v₂(p) below p_T = 1 GeV/c due to early decoupling of φ
 - ✓ Multi-strange hadrons: penetrating probe for early dynamics in HI collisions

Meson/Baryon v_2 at intermediate p_T

• Similar magnitude of v₂ for multi-strange hadrons

✓ most of collectivity is developed at partonic stage

 Clear separation of v₂ between mesons and baryons in p_T = 2 - 5 GeV/c

Number of quark scaling of v₂

- Empirical m_T mass scaling at low p_T
- Number of quark scaling holds up to 1 GeV/c in (m_T-mass)/n_q, start splitting above 1 GeV/c
 - ✓ p_T ~ 2 GeV/c for π , ~3.8 GeV/c for protons

Stronger flow at central collisions

- Number of quark scaling holds for each centrality
- Stronger collectivity in central collisions
 - \checkmark Collectivity is driven by the eccentricity and system size
 - ✓ Is hydro. (or thermalization) really applicable in peripheral ?

Extract η/s

- Recent developments of viscous hydrodynamical models → Upper limit of QGP viscosity ~ 6 × 1/(4π)
- Need fluctuating initial conditions (+ deformation) + viscous hydro. model + hadronic rescattering
 - ✓ Which initial conditions, Glauber or CGC or something else ?

Other important v₂ measurements

- High p_T v₂ (p_T > 4 6 GeV/c)
 - ✓ Number of quark scaling
 - ✓ Parton energy loss
- (Thermal) photon v₂
 - ✓ via direct photon, di-lepton measurements
- charm(onium) (e.x. J/ψ), bottom v_2
 - ✓ Recombination of charm, thermalization
- U + U collisions
 - ✓ Initial conditions, detailed path length dependence (v_2 and R_{AA})
 - ✓ will start in 2011 at RHIC

Conclusions

- Azimuthal anisotropy measurements are important for investigating the early collision dynamics at RHIC
 - ✓ Systematics among different methods can be explained with reasonable assumptions of non-flow and fluctuations
 - ✓ Agreement with different RHIC experiments ~10%
 - ✓ Measured v₂ would constrain important model parameters
 - ✓ Quantitative model comparison is crucial
 - Initial fluctuation + (deformation) + viscous hydro. model + hadronic rescattering
- Future v₂ measurements would provide further constraints on medium properties at RHIC
 - ✓ Charm/bottom flow via D/B mesons
 - ✓ Thermal photon flow via low p_T direct photon, di-leptons
 - ✓ U + U collisions, will start in 2011 at RHIC

Back up

Are charm and bottom flowing ?

- Substantial heavy flavor electron v₂
 - ✓ η /s = (1.3-2)/(4 π) with model comparison (v₂ and R_{AA})
 - ✓ Significant bottom contribution ~50% at high p_T
 - PHENIX: PRL103, 082002 (2009)
- Full secondary vertex reconstruction of D/B mesons